$91 / \sec x \cdot \tan x d x$
$=-\sec x+C$

$$
\begin{aligned}
& \text { 11) } \int\left(x^{+x}+20 \cdot 4 x^{3} d x\right. \\
& d u=\frac{x^{4}+2}{4 x^{3} d x} \\
& \int v^{3} d v=\frac{v^{4}}{4}=\frac{\left(x^{4}+2\right)^{4}}{4}+c
\end{aligned}
$$

$$
\begin{aligned}
& u=x^{5}-5 \\
& \text { 5. } d u \stackrel{5}{5} 5 x^{4} d x \\
& 5 \int \csc u \cot u d u=-5 \csc u+c \\
& =-5 \operatorname{cs}\left(x^{5}-5\right)+c \\
& \text { 29) } \int^{3}\left(x^{2}-4 x^{2}+3 x^{2}+2 x-3\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\frac{243}{5} \cdot 89+27+9-x+(-7-4+1 \\
80
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
6 \frac{2}{3}+4 \frac{7}{2} \\
6 \frac{8}{12}+4 \frac{7}{12}-\left(2 \frac{1}{n}\right)
\end{array} \quad \begin{array}{l}
-\frac{1}{4}-\frac{1}{3}-4=-4 \frac{7}{2} \\
\frac{3}{12} \frac{4}{12}
\end{array} \\
& 10 \frac{\sqrt{12} 5}{12}=11 \frac{1}{4}=11.2 \mathrm{~h}
\end{aligned}
$$

